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priate value of the constant ¢ (in the relation v, = ck%Zm) is
¢ = |(uv)/k|? ~ 0.55. (10.42)
Use the relation P = € to show
37 3
e=c"k2[lp, (10.43)

and hence
ve = k2 Je. (10.44)

Exercise 10.4 For the one-equation model applied to simple shear
flow, express the production P in terms of k, {,, and 9(U)/dy. Hence
(taking Cp = ¢® in Eq. 10.37) show that the velocity scales u* in the
one-equation model and in the mixing-length model are related by

L, oy (P ®
ck _zm‘—ay ‘<E> : (10.45)

Show that the corresponding relation for a general flow is

€

1 -4
ck? = 0,8 <P> , (10.46)

(cf. Eq. 10.20).

10.4 The k- Model

10.4.1 Overview

The k- model belongs to the class of two-equation models, in which modelled
transport equations are solved for two turbulence quantities i.e., £ and ¢
in the k-¢ model. From these two quantities can be formed a lengthscale
(L= k%/s), a timescale (1 = k/¢), a quantity of dimension vy (k?/e), etc.
As a consequence, two-equation models can be complete—flow-dependent
specification such as ¢,,(x) are not required.

The k-¢ model is the most widely used complete turbulence model, and
it is incorporated in most commercial CFD codes. As with all turbulence
models, both the concepts and the details evolved over time; but Jones and
Launder (1972) are appropriately credited with developing the “standard”
k- model, with Launder and Sharma (1974) providing improved values of
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the model constants. Significant earlier contributions are due to Davidov
(1961), Harlow and Nakayama (1968), Hanjali¢ (1970), and others cited by
Launder and Spalding (1972).

In addition to the turbulent viscosity hypothesis, the k-¢ model consists
of:

(i) the modelled transport equation for k& (which is the same as in the
one-equation model, Eq. 10.41)

(ii) the modelled transport equation for ¢ (which is described below)

(iii) the specification of the turbulent viscosity as
vr = C,k*[e, (10.47)
where C,, = 0.09 is one of five model constants.

If it is supposed that v, depends only on the turbulence quantities & and
¢ (independent of O(U;)/0x; etc.), then Eq. (10.47) is inevitable. The one-
equation model implies the similar relation, vy = ¢*k?/e (see Exercise 10.3),

1

and so the model constants are related by ¢ = C);.
In simple turbulent shear flow, the k-¢ model yields

[{w)]
k

1p

£

: (10.48)

(see Exercise 10.5) so that the specification C,, = 0.09 = (0.3)? stems from
the empirical observation |(uv)|/k = 0.3 in regions where P/e is close to
unity.

The quantity vre/k? plotted in Figs. 10.3 and 10.4 is a “measurement”
of C, for channel flow and for the temporal mixing layer. As may be seen,
vre/ k? is everywhere close to the value 0.09, except near the boundaries of
the flows.

Exercise 10.5 Consider the k-¢ model applied to a simple turbulent
shear flow with & = 9(U)/dy being the only non-zero mean velocity
gradient. Obtain the relations

=C,—, (10.49)

and

2
g _c, <ﬁ> , (10.50)
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and hence verify Eq. (10.48).

Show that (uv) satisfies the Cauchy-Schwartz inequality (Eq. 3.100) if,
and only if, C), satisfies

2/3
< , 10.51
C’ﬂ — Sk/é_/ ( 0.5 )
or, equivalently,
4/9
< —=. .
Cu < P (10.52)

Show that Eq. (10.50) also holds for a general flow.

10.4.2 Model Equation for ¢

Quite different approaches are taken in developing the modelled transport
equations for k and e. The k equation amounts to the exact equation
(Eq. 10.35) with the turbulent flux T’ modelled as gradient diffusion (Eq. 10.40).
The three other terms DE/Dt, P and € are in closed form (given the tur-
bulent viscosity hypothesis).

The exact equation for € can also be derived, but it is not a useful starting
point for a model equation. This is because (as discussed in Chapter 6) ¢
is best viewed as the energy flow rate in the cascade, and it is determined
by the large scale motions, independent of the viscosity (at high Reynolds
number). In contrast, the exact equation for e pertains to processes in
the dissipative range. Consequently, rather than being based on the exact
equation, the standard model equation for € is best viewed as being entirely
empirical: it is

D 2
v (”—TVs) ToR Ao (10.53)
o k k

The standard values of all the model constants due to Launder and Sharma
(1974) are:

Cp=0.09, Coy = 1.44, Cop = 1.92, 0 = 1.0, 0. = 1.3. (10.54)

An understanding of the € equation can be gained by studying its behav-
ior in different flows. We first examine homogeneous turbulence, for which
the k£ and ¢ equations become

dk

=P (10.55)
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and )

de Pe €

— =C;— — Coo—. 10.56

dt el A €2 A ( )
Decaying Turbulence. In the absence of mean velocity gradients, the
production is zero, and the turbulence decays. The equations then have the

solutions
t —n t 7(TL+1)
k(t) = ko (—) , e(t) =¢o (—) , (10.57)
to to
where k£ and ¢ have the values kg and ¢y at the reference time
k
to =n-2, (10.58)
€0
and the decay exponent n is
! (10.59)
n = . .
Coo—1

This power law decay is precisely that observed in grid turbulence (see Sec-
tion 5.4.6, Egs. 5.274 and 5.277), and so the behavior of the £ equation is
correct for this flow.

The experimental values reported for the decay exponent n are generally
in the range 1.15-1.45, and Mohamed and LaRue (1990) suggest that most
of the data are consistent with n = 1.3. Equation (10.59) can be rearranged

to give Ceg in terms of n :

1
Oy — ”:: , (10.60)

and corresponding to n = 1.15, 1.3 and 1.45, the values of C., are 1.87, 1.77
and 1.69. It may be seen then, that the standard value (Ceo = 1.92) lies
somewhat outside the experimentally-observed range. The reason for this is
discussed below.

Exercise 10.6 Consider the k-¢ model applied to decaying turbu-
lence. Let s(t) be the normalized time defined by

_[te) L,
s(t) _/to RE

(a) Obtain an explicit expression for s(t).

(b) Derive and solve evolution equations in s for k and ¢ (i.e., dk/ds =

).



